Skip to main content

Hyperprolinemia Type I

Hyperprolinemia Type I



OVERVIEW

Two types of hyperprolinemia are recognized by physicians and clinical researchers. Each represents an inherited inborn error of metabolism involving the amino acid, proline.

Hyperprolinemia Type I (HP-I) is characterized by high levels of proline in the blood resulting from a deficiency of the enzyme proline oxidase, which is key to the breakdown (metabolism) of proline. There are often no clinical manifestations of HP-1.

Hyperprolinemia II (HP-II) is a rare metabolic disorder that results from the deficiency of the enzyme known as delta-pyrroline-5-carboxylate (P-5-C) dehydrogenase. This disorder results in more severe clinical manifestations than are seen in HP-I, and may be associated with mild mental retardation and seizures.

 SIGNS & SYMPTOMS

Hyperprolinemia Type I is characterized by an abnormally high level of the amino acid proline in the blood. Fevers associated with seizures are common and mild mental retardation may be present.

CAUSES

Hyperprolinemia Type I is an autosomal recessive disorder. The gene involved has been mapped to the short arm of chromosome 1 (1p36). Chromosomes, which are present in the nucleus of human cells, carry the genetic characteristics of each individual. Pairs of human chromosomes are numbered from 1 through 22, with an unequal 23rd pair of X and Y chromosomes for males, and two X chromosomes for females. Each chromosome has a short arm designated as “p” and a long arm identified by the letter “q”. Chromosomes are further subdivided into many bands that are numbered. For example, chromosome 1p36 refers to band 36 on the short arm of chromosome 1.

Recessive genetic disorders occur when an individual inherits the same abnormal gene for the same trait from each parent. If an individual receives one normal gene and one gene for the disease, the person will be a carrier for the disease, but usually will not show symptoms. The risk for two carrier parents to both pass the defective gene and, therefore, have an affected child is 25% with each pregnancy. The risk to have a child who is a carrier like the parents is 50% with each pregnancy. The chance for a child to receive normal genes from both parents and be genetically normal for that particular trait is 25%. The risk is the same for males and females.

All individuals carry 4 to 5 abnormal genes. Parents who are close relatives (consanguineous) have a higher chance than unrelated parents to both carry the same abnormal gene, which increases the risk of having children with a recessive genetic disorder.

 AFFECTED POPULATIONS

Hyperprolinemia Type II is a very rare disorder that is present at birth. It affects males and females in equal numbers.

DISORDERS WITH SIMILAR SYMPTOMS

Symptoms of the following disorder are similar to those of Hyperprolinemia Type II. Comparisons may be useful for a differential diagnosis:

Hyperprolinemia Type I is a hereditary condition characterized by an excessive level of proline in the blood. However, the levels of proline are lower than those in Type II Hyperprolinemia. This condition is caused by a deficiency of the enzyme proline dehydrogenase. It may be associated with kidney disease. (For more information, choose “Hyperprolinemia Type I” as your search term in the Rare Disease Database.)


DIAGNOSIS

HP-II is recognized by elevated blood proline and elevated P-5-C levels in the urine. (Normal blood proline levels are about 450 units whereas elevated blood proline levels in subjects with HP-II reach 1900-2000 units.)


STANDARD THERAPIES

Treatment


Proline is abundant in nature and readily found in a variety of foods. As a result, attempts to control blood proline levels by restrictive dieting have not succeeded. Patients with childhood neurological manifestations appear to grow out of the pattern of fevers and seizures. Adult life appears to be symptom-free.


Comments

Popular posts from this blog

Charge Syndrome

Overview CHARGE syndrome is a recognizable genetic syndrome with known pattern of features. It is an extremely complex syndrome, involving extensive medical and physical difficulties that differ from child to child. CHARGE syndrome is correlated with genetic mutation to CHD7 and the prevalence of CHARGE syndrome is 1:10,000-1:15,000 live births. Babies with CHARGE syndrome are often born with life-threatening birth defects. They spend many months in the hospital and undergo many surgeries and other treatments. Swallowing and breathing problems make life difficult even when they come home. Most have hearing two little girls sitting on a carpet, one girl has a trach and is biting her finger.loss, vision loss, and balance problems that delay their development and communication. Despite these seemingly insurmountable obstacles, children with CHARGE syndrome often far surpass their medical, physical, educational, and social expectations. One of the hidden features of CHARGE syndrome is the ...

Legg–Calve–Perthes disease

  Legg–Calve–Perthes disease Overview Legg-Calve-Perthes (LEG-kahl-VAY-PER-tuz) disease is a childhood condition that occurs when blood supply to the ball part (femoral head) of the hip joint is temporarily interrupted and the bone begins to die. This weakened bone gradually breaks apart and can lose its round shape. The body eventually restores blood supply to the ball, and the ball heals. But if the ball is no longer round after it heals, it can cause pain and stiffness. The complete process of bone death, fracture and renewal can take several years. To keep the ball part of the joint as round as possible, doctors use a variety of treatments that keep it snug in the socket portion of the joint. The socket acts as a mold for the fragmented femoral head as it heals. Symptoms Symptoms of Perthes disease include: Limping. Pain or stiffness in the hip, groin, thigh or knee. Limited range of motion of the hip joint. Pain that worsens with activity and improves with rest. Perthes diseas...

Kernicterus

  Kernicterus Overview Kernicterus is a rare condition that affects your baby’s brain when they have too much bilirubin in their blood (hyperbilirubinemia). Bilirubin is a yellow waste product that your body makes. Sometimes, your liver can’t remove enough bilirubin to keep you healthy. Too much bilirubin can cause jaundice. This is when your skin, the whites of your eyes and your gums or the area underneath your tongue (mucous membranes) appear yellow. Symptoms of kernicterus progress in stages. In addition to jaundice, symptoms usually affect newborns and include irritability, poor feeding and seizures. Complications can lead to hearing loss and permanent brain damage. If you notice changes to your newborn’s behavior or appearance, contact their healthcare provider immediately. You may hear your healthcare provider call kernicterus “bilirubin encephalopathy.” Jaundice is common in newborns. Healthcare providers will monitor newborn jaundice to decrease your baby’s risk of develop...