Skip to main content

Hereditary Orotic Aciduria

 Hereditary Orotic Aciduria



OVERVIEW

Hereditary orotic aciduria is an extremely rare genetic disorder. When untreated, affected infants can develop a blood (hematologic) disorder called megaloblastic anemia as well as failure to thrive, susceptibility to infection, and orotic acid crystals in the urine (crystalluria) resulting from excretion of orotic acid in the urine. Impaired neurological development has been observed, but invariably, especially since a treatment has become available.

Because so few individuals have been identified with this disorder, much about hereditary orotic aciduria is not fully understood. The disorder is caused by variations in the UMPS gene. In 2015, the U.S. Food and Drug Administration (FDA) approved a treatment called uridine triacetate (Xuriden) for this disorder

SYMPTOMS

Some affected infants develop megaloblastic anemia, a condition in which the bone marrow produces unusually large, structurally-abnormal, immature red blood cells (megaloblasts). Megaloblastic anemia usually becomes apparent within the first few months of life.

Some infants and children may have neurological problems including delays in reaching developmental milestones (developmental delays). There may also be delays or issues with intellectual development including mild intellectual disability. Seizures (epilepsy) have been reported in some individuals. Some infants fail to gain weight and grow as they normally would for their age and gender (failure to thrive), but others are normal. As all children grow older, height and weight appear to fall in the normal range.

Sometimes, the urine of people with hereditary orotic aciduria is cloudy because of the presence of orotic acid crystals (crystalluria). These crystals may also play a role in episodes of obstructive uropathy that have can also occur. Obstructive uropathy is a condition in which there is some type of obstruction of the urinary tract, which can cause urine to back up, lead to blood to appear in the urine (hematuria), and other complications.

Other symptoms have been reported in one or two individuals, but researchers are not sure if they are features of the disorder, or if they occurred for other reasons or were coincidental findings. These symptoms include diarrhea, congenital malformations, inflammation of the mouth and lips (stomatitis), and misalignment of the eyes (strabismus). Some affected infants had congenital heart disease, including septal defects. Septal defects are abnormalities in the walls (septum) that separate the lower chambers of the heart (ventricles), or the upper chambers of the heart (atria).

CAUSES

Hereditary orotic aciduria is caused by variations in the uridine monophosphate synthetase (UMPS) gene. Genes provide instructions for creating proteins that play a critical role in many functions of the body. When a mutation of a gene occurs, the protein product may be faulty, inefficient, absent, or overproduced. Depending upon the functions of the particular protein, this can affect many organ systems of the body, including the brain.

The UMPS gene produces (encodes) a specialized protein (enzyme) called uridine 5’-monophosphate synthase. This enzyme is a bifunctional, which means it has the capacity to cause (catalyze) two consecutive metabolic reactions. In this case, it catalyzes the last two steps of the de novo pyrimidine biosynthesis pathway. A pathway is a series of biochemical processes in which certain substances are broken down or created. This pathway creates a type of pyrimidine called uridine monophosphate. Pyrimidines are compounds found in deoxyribonucleic acid (DNA), ribonucleic acid (RNA) and certain molecules within the body. One of these final two steps is to convert orotic acid into another chemical substance. Because of a variation in the UMPS gene, affected individuals have very low levels of the enzyme needed to break down orotic acid. This causes orotic acid to buildup in the body. Some of this excess orotic acid is passed through the urine. In addition to being broken down in the pyrimidine biosynthesis pathway, orotic acid is also believed to improve the metabolism of folic acid and vitamin B12, and may play a role in gene transcription, which is the process by which genetic information is copied from DNA to RNA in order to create a useful product like a specific protein.

There are reports in the medical literature of individuals who have a variation in the UMPS gene, but have only developed very mild symptoms that did not cause any significant consequences. The exact manner by which orotic acid buildup and uridine monophosphate synthase deficiency ultimately lead to the signs and symptoms associated with this disorder is not completely understood yet.

Genetic diseases are determined by the combination of genes for a particular trait that are on the chromosomes received from the father and the mother. Disorders inherited in a recessive pattern occur when an individual inherits the same variant gene for the same trait from each parent. If an individual receives one normal gene and one gene for the disease, the person will be a carrier for the disease, but usually will not show symptoms. The risk for two carrier parents to both pass the defective gene and, therefore, have an affected child is 25% with each pregnancy. The risk to have a child who is a carrier like the parents is 50% with each pregnancy. The chance for a child to receive normal genes from both parents and be genetically normal for that particular trait is 25%. The risk is the same for males and females.

AFFECTED POPULATIONS

Hereditary orotic aciduria is an extremely rare disorder that affects both men and women. Only about 20 individuals with this disorder have been reported in the medical literature. The birth prevalence, which is the number of babies born with a disorder compared to the total number of live births, is estimated to be less than 1 in 1,000,000 live births. Because rare diseases often go misdiagnosed or undiagnosed, determining their true frequency in the general population is extremely difficult.

DISORDERS WITH SIMILAR SYMPTOMS

Symptoms of the following disorders can be similar to those of hereditary orotic aciduria. Comparisons may be useful for a differential diagnosis.

The urea cycle disorders are a group of rare disorders affecting the urea cycle, a series of biochemical processes in which nitrogen is converted into urea and removed from the body through the urine. Nitrogen is a waste product of protein metabolism. Failure to break down nitrogen results in the abnormal accumulation of nitrogen, in the form of ammonia, in the blood. Urea cycle disorders can also have elevated levels of orotic aid in the urine. (For more information on these disorders, choose the specific urea cycle disorder as your search term in the Rare Disease Database.)

Mitochondrial diseases are a group of rare genetic disorders. Mitochondria, found by the hundreds within virtually every cell of the body, are often described as the powerhouses of the cell. They generate most of the cellular energy through the respiratory chain enzymes (complexes I-V), which convert electrons derived from sugars and fats into ATP, the energy currency of the cell. The genetic blueprints for essential components of the respiratory chain are mitochondrial DNA (mtDNA). Disorders due to mitochondrial dysfunction, often defects of the respiratory chain, are called mitochondrial disease. Because energy is essential for many tissue functions, mitochondrial diseases typically affect multiple organs of the body. (For more information on these disorders, choose the specific disorder name as your search term in the Rare Disease Database.)

Elevated levels or orotic acid in the urine has also been seen in lysinuric protein intolerance, Rett syndrome, certain forms of liver disease, certain forms of cancer and secondary to the use of certain medications. Several other conditions can cause megaloblastic anemia include various forms of leukemia, Lesch-Nyhan disease, and deficiencies in cobalamin (vitamin B12) or folate (vitamin B9). (For more information on these disorders, choose the specific disorder name as your search term in the Rare Disease Database.)

DIAGNOSIS

A diagnosis of hereditary orotic aciduria is based upon identification of characteristic symptoms, a detailed patient and family history, a thorough clinical evaluation and examination of the urine.

Clinical Testing and Workup

Examination of the urine (urinalysis) can reveal elevated levels of orotic acid. Other conditions, namely the urea cycle disorders, can also cause elevated levels of orotic acid. However, these disorders also cause elevated levels of ammonia in the blood, while hereditary orotic aciduria does not.

Most affected individuals have had their diagnosis confirmed through molecular genetic testing. Molecular genetic testing can detect variations in the UMPS gene known to cause the disorder, but is available only as a diagnostic service at specialized laboratories.

STANDARD THERAPIES

Treatment

In 2015, the U.S. Food and Drug Administration (FDA) approved a treatment called uridine triacetate (Xuriden) for hereditary orotic aciduria. This medication restores the chemical compound called uridine monophosphate (sometimes just called uridine). Because of the underlying genetic defect, affected individuals cannot create (synthesize) sufficient amounts of uridine monophosphate on their own. Clinical trials investigating this medication showed improvement in anemia and disappearance of megaloblastosis and a decrease in orotic acid levels in the urine. Affected individuals also showed improvement in or remained stable in weight or height growth. Researchers believe that affected individuals must remain on this treatment throughout their lives to assure orotic acid levels remain decreased.

Although only a small number of people have been diagnosed with hereditary orotic aciduria, some affected individuals who were treated have gone to school, gotten married, have had children, and have lived a relatively unaffected lifestyle. Researchers do not know whether hereditary orotic aciduria can cause long-term complications.

Any additional treatment would be direct toward the specific symptoms that are present in each individual. Genetic counseling can be of benefit for affected individuals and their families.

Type Of Doctor Department: Physicians

Comments

Popular posts from this blog

Charge Syndrome

Overview CHARGE syndrome is a recognizable genetic syndrome with known pattern of features. It is an extremely complex syndrome, involving extensive medical and physical difficulties that differ from child to child. CHARGE syndrome is correlated with genetic mutation to CHD7 and the prevalence of CHARGE syndrome is 1:10,000-1:15,000 live births. Babies with CHARGE syndrome are often born with life-threatening birth defects. They spend many months in the hospital and undergo many surgeries and other treatments. Swallowing and breathing problems make life difficult even when they come home. Most have hearing two little girls sitting on a carpet, one girl has a trach and is biting her finger.loss, vision loss, and balance problems that delay their development and communication. Despite these seemingly insurmountable obstacles, children with CHARGE syndrome often far surpass their medical, physical, educational, and social expectations. One of the hidden features of CHARGE syndrome is the ...

Legg–Calve–Perthes disease

  Legg–Calve–Perthes disease Overview Legg-Calve-Perthes (LEG-kahl-VAY-PER-tuz) disease is a childhood condition that occurs when blood supply to the ball part (femoral head) of the hip joint is temporarily interrupted and the bone begins to die. This weakened bone gradually breaks apart and can lose its round shape. The body eventually restores blood supply to the ball, and the ball heals. But if the ball is no longer round after it heals, it can cause pain and stiffness. The complete process of bone death, fracture and renewal can take several years. To keep the ball part of the joint as round as possible, doctors use a variety of treatments that keep it snug in the socket portion of the joint. The socket acts as a mold for the fragmented femoral head as it heals. Symptoms Symptoms of Perthes disease include: Limping. Pain or stiffness in the hip, groin, thigh or knee. Limited range of motion of the hip joint. Pain that worsens with activity and improves with rest. Perthes diseas...

Kernicterus

  Kernicterus Overview Kernicterus is a rare condition that affects your baby’s brain when they have too much bilirubin in their blood (hyperbilirubinemia). Bilirubin is a yellow waste product that your body makes. Sometimes, your liver can’t remove enough bilirubin to keep you healthy. Too much bilirubin can cause jaundice. This is when your skin, the whites of your eyes and your gums or the area underneath your tongue (mucous membranes) appear yellow. Symptoms of kernicterus progress in stages. In addition to jaundice, symptoms usually affect newborns and include irritability, poor feeding and seizures. Complications can lead to hearing loss and permanent brain damage. If you notice changes to your newborn’s behavior or appearance, contact their healthcare provider immediately. You may hear your healthcare provider call kernicterus “bilirubin encephalopathy.” Jaundice is common in newborns. Healthcare providers will monitor newborn jaundice to decrease your baby’s risk of develop...