Skip to main content

Marburg Virus

Overview

Marburg hemorrhagic fever is a severe and highly fatal disease caused by a virus from the same family as the one that causes Ebola hemorrhagic fever. Both diseases are rare, but can cause dramatic outbreaks with high fatality. There is currently no specific treatment or vaccine.

Symptoms

Nausea, vomiting, chest pain, a sore throat, abdominal pain, and diarrhea may appear. Symptoms become increasingly severe and can include jaundice, inflammation of the pancreas, severe weight loss, delirium, shock, liver failure, massive hemorrhaging, and multi-organ dysfunction.Many patients develop severe haemorrhagic manifestations between 5 and 7 days, and fatal cases usually have some form of bleeding, often from multiple areas. Fresh blood in vomitus and faeces is often accompanied by bleeding from the nose, gums, and vagina. Spontaneous bleeding at venepuncture sites (where intravenous access is obtained to give fluids or obtain blood samples) can be particularly troublesome. During the severe phase of illness, patients have sustained high fevers. Involvement of the central nervous system can result in confusion, irritability, and aggression. Orchitis (inflammation of one or both testicles) has been reported occasionally in the late phase of disease (15 days).

In fatal cases, death occurs most often between 8 and 9 days after symptom onset, usually preceded by severe blood loss and shock.

Treatment

There is no specific treatment for Marburg virus disease. Supportive hospital therapy should be utilized, which includes balancing the patient's fluids and electrolytes, maintaining oxygen status and blood pressure, replacing lost blood and clotting factors, and treatment for any complicating infections.

Marburg virus in animals

African green monkeys (Cercopithecus aethiops) imported from Uganda were the source of infection for humans during the first Marburg outbreak.

Experimental inoculations in pigs with different Ebola viruses have been reported and show that pigs are susceptible to filovirus infection and shed the virus. Therefore, pigs should be considered as a potential amplifier host during MVD outbreaks. Although no other domestic animals have yet been confirmed as having an association with filovirus outbreaks, as a precautionary measure they should be considered as potential amplifier hosts until proven otherwise.

Precautionary measures are needed in pig farms in Africa to avoid pigs becoming infected through contact with fruit bats. Such infection could potentially amplify the virus and cause or contribute to MVD outbreaks.

Risk of Exposure

People may be at risk of exposure to Marburg virus if they have close contact with:

  • African fruit bats (Rousettus aegyptiacus – the reservoir host of Marburg virus), or their urine and/or excretions
  • People sick with Marburg virus disease; or
  • Non-human primates infected with Marburg virus

Historically, the people at highest risk include family members and hospital staff who care for patients infected with Marburg virus and have not used proper infection prevention and control measures. Certain occupations, such as veterinarians and laboratory or quarantine facility workers who handle non-human primates from Africa, may also be at increased risk of exposure to Marburg virus.

Exposure risk can be higher for those travelers visiting endemic regions in Africa who have contact with fruit bats (Rousettus aegyptiacus), or enter caves or mines inhabited by these bats.

How did Marburg virus start?

The first people infected had been exposed to Ugandan imported African green monkeys or their tissues while conducting research. One additional case was diagnosed retrospectively. The reservoir host of Marburg virus is the African fruit bat, Rousettus aegyptiacus.

Why is it called Marburg virus?

The virus was named after the city of Marburg, where most of the more than 30 cases in the 1967 epidemic were documented. RAVV was discovered in 1987, in a 15-year-old Danish boy who suffered from viral hemorrhagic fever in Kenya; the strain was named for the patient.

Does Marburg virus have a vaccine?

There is neither an approved treatment nor a vaccine against Marburg virus disease (MVD) and due to its high pathogenicity and effective human-to-human transmission MARV is classified as a select agent in the United States and the World Health Organization (WHO) added it to its list of priority pathogens

How did humans stop the Marburg virus?

These precautions include wearing protective gowns, gloves, and masks; placing the infected individual in strict isolation; and sterilization or proper disposal of needles, equipment, and patient excretions. MVD is a very rare disease in people.

Comments

Popular posts from this blog

Charge Syndrome

Overview CHARGE syndrome is a recognizable genetic syndrome with known pattern of features. It is an extremely complex syndrome, involving extensive medical and physical difficulties that differ from child to child. CHARGE syndrome is correlated with genetic mutation to CHD7 and the prevalence of CHARGE syndrome is 1:10,000-1:15,000 live births. Babies with CHARGE syndrome are often born with life-threatening birth defects. They spend many months in the hospital and undergo many surgeries and other treatments. Swallowing and breathing problems make life difficult even when they come home. Most have hearing two little girls sitting on a carpet, one girl has a trach and is biting her finger.loss, vision loss, and balance problems that delay their development and communication. Despite these seemingly insurmountable obstacles, children with CHARGE syndrome often far surpass their medical, physical, educational, and social expectations. One of the hidden features of CHARGE syndrome is the ...

Legg–Calve–Perthes disease

  Legg–Calve–Perthes disease Overview Legg-Calve-Perthes (LEG-kahl-VAY-PER-tuz) disease is a childhood condition that occurs when blood supply to the ball part (femoral head) of the hip joint is temporarily interrupted and the bone begins to die. This weakened bone gradually breaks apart and can lose its round shape. The body eventually restores blood supply to the ball, and the ball heals. But if the ball is no longer round after it heals, it can cause pain and stiffness. The complete process of bone death, fracture and renewal can take several years. To keep the ball part of the joint as round as possible, doctors use a variety of treatments that keep it snug in the socket portion of the joint. The socket acts as a mold for the fragmented femoral head as it heals. Symptoms Symptoms of Perthes disease include: Limping. Pain or stiffness in the hip, groin, thigh or knee. Limited range of motion of the hip joint. Pain that worsens with activity and improves with rest. Perthes diseas...

Kernicterus

  Kernicterus Overview Kernicterus is a rare condition that affects your baby’s brain when they have too much bilirubin in their blood (hyperbilirubinemia). Bilirubin is a yellow waste product that your body makes. Sometimes, your liver can’t remove enough bilirubin to keep you healthy. Too much bilirubin can cause jaundice. This is when your skin, the whites of your eyes and your gums or the area underneath your tongue (mucous membranes) appear yellow. Symptoms of kernicterus progress in stages. In addition to jaundice, symptoms usually affect newborns and include irritability, poor feeding and seizures. Complications can lead to hearing loss and permanent brain damage. If you notice changes to your newborn’s behavior or appearance, contact their healthcare provider immediately. You may hear your healthcare provider call kernicterus “bilirubin encephalopathy.” Jaundice is common in newborns. Healthcare providers will monitor newborn jaundice to decrease your baby’s risk of develop...